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FINAL REPORT - ONR CONTRACT #N00014-84-K-0027

CREEP AND FRACTURE CHARACTERISTICS OF MATERTALS AND STRUCTURES
AT ELEVATED TEMPERATURES

PRINCIPAL INVESTIGATOR - DEAN HAROLD LIEBOWITZ
TECHNICAL DIRECTOR - ASSOC. PROF. E, THOMAS MOYER JR

Significant research was performed under ONR Contract #N00014-84-K-0027
during the period of the contract. As listed in Appendix A, this work
resulted in eight refereed publications and four invited presentations at
International Conferences. The work also resulted in four student theses
listed in Appendix B. In addition, experimental progress was made in
creep fracture testing. As outlined below, this work was has not been
completed due to the lack of continuation of the contract.

The work under this contract was concentrated in three major areas: the
effect of mixed mode loading on fracture characteristics, the nature of
crack tip stress, strain and energy fields in ductile materials and the
nature of crack tip stress strain and energy fields in materials

i .

undergoing rate dependent viscoplastic deformation. In each of these
areas, new insight was obtained and better wunderstanding of the
fundamental physical processes gained. /. .

- -TD R ’ ~

Early work on this contract focused on mixed mode fracture
characteristics. Experimental studies and finite element modeling
determined specimen characteristics and design modifications for a mode
two fracture specimen. This specimen has the wunique capability of
testing from pure mode one to pure mode two without significant crack
face rotation. This work is documented in two student thesis (students
were successful candidates for the Diplome degree through a joint,
cooperative program between the University of Stuttgart and the George
Washington University). In addition, furcther work developed a
computational procedure based on the nodal force approach for the
determination of stress intensity factor distributions along arbitrary
crack fronts in three dimensions. This work was presented at an ASTM
conference and will appear in ASTM STP #969. This work is also
documented in a student masters thesis (all student theses are listed in
Appendix B).

Work on ductile fracture was carried out for three dimensional, mode one

crack geometries,. The effect of specimen thickness and material
hardening characteristics was studied. In addition to useful
understanding, the thickness range where plane strain and plane stress
are valid assumptions were discovered. Depending on the ductility of the
material, the plane strain thickness did not correspond to the ASTM
requirement due to the assumptions of elasticity employed. A modified
approach for determination of plane strain thickness was proposed. In

addition to the three dimensional studies involving a stationary mode one
crack, further research was performed in the areas of mixed mode ductile
fracture and ductile crack growth. The mixed mode ductile fracture
studies demonstrated the crack opening characteristics as a function of
mode ratio. It wa. dJdemonstrated that for dominant mode one, a distinct
notch effert is observed. This notch opening removes the HRR singularity
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and produces a ductile zone which is characterized by a weaker energy
singularity than was previously known. 1In addition, as mode two becomes
more dominant, the deformed crack remains sharper and the 1local HRR
characteristics return. In addition, the significant rotation occurs at
the crack tip altering the amplitude of the local field. Mode one crack
growth studies were performed. This work demonstrated a computational
approach for accurately modeling stable crack growth with a commercial
finite element code. The physical results demonstrate the disappearance
of the HRR zone due to notch opening and the appearance of a significant
transition zone which dominates the local fracture zone. This zone is
characterized by an energy singularity which is weaker than 1l/r. This is
a new result which 1is under further investigation. The two dimensional
studies are documented in student theses listed in Appendix B. To date,
work is continuing on this problem and the results are not yet available
in the open literature. The student theses, therefore, are inclwuded as
Appeudices D and E.

Studies on creep fracture characteristics were the focus of significant
study under this contract. Experimental work focused on crack growth
studies on IN 718 at 650 degrees C. At this temperature, significant
constituitive data was available. These results demonstrated that the C*
integral was not employable as a crack driving force measure. In
addition, it was determined that experimental scatter was due to crack
front curvature effects which <could be minimized through careful
experimental technique. The final results demonstrated a two stage
growth regime which was numerically fit to explicit time functions for
crack growth simulation. This work was part of an ONR progress report
and is included as Appendix E. Finite element studies of creep crack
growth were performed and the results are part of a recent publication
included as Appendix F. This study demonstrated the influence of finite
strains in the <crack region and the inability of local asymptotic
solutions to characterize the stress fields near stationary and growing
cracks. In addition, convergence and accuracy of the numerical approach

was studied extensively. New understanding of convergence
characteristics was obtained.

Experiments were initiated at 550 degrees C to determine if the results
at 650 degrees were characteristic of creep crack growth in pgeuneral or
were a qualitative function of temperature. Unfortunately, insufficient
constituitive data was available at 550 degrees and the data was not able
to be analyzed. Constituitive tests were initiated, however, the
contract resources were not sufficient to complete the work, If future

funding is available for this work, the tests will be completed and the
results will be forwarded to ONR.

The appendices of this work document the significant research

contribution that was made under ONR contract #N0O0014-84-K-0027. All
publications cited in the appendices were forwarded to ONR at publication
and were included in the quarterly progress reports. In addition, all

publications have been sent to the ONR distribution list at the time of
publication.
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"Creep Crack Growth Modeling and Near Tip Stress Fields"
E. Thomas Moyer Jr. and Harold Liebowitz, Engineering Fracture
Mechanics, Vol. 28, pp. 601, 1987.

"Finite Element Methods in Fracture Mechanics"

Harold Liebowitz and E. Thomas Moyer Jr., Proc. 5th International
Conference in Australia in Fracture Mechanics, University of
Melbourne, Australia, 1987.

"Finite Element Modeling for Elastic-Plastic Fracture Problems in
Three Dimensions", International Journal for Numerical Methods in
Engineering, Vol. 22, pp. 289, 1986.

"Prediction of Plasticity Characteristics for Three-Dimensional
Fracture Specimens: Comparison with Experiment”
E.T. Moyer Jr., H. Liebowitz and P.K. Poulose, Engineering Fracture
Mechanics, Vol. 24, pp. 677, 1986.

"Accurate Modeling of Ductile and Creep Fracture Specimens and
Processes", E. Thomas Moyer Jr., Proc. of the ASM Conference on
Fatigue, Corrosion Cracking, Fracture Mechanics and Failure Analysis,
ASM publications, 1985.

"Methodology for Mixed Mode Stress Intensity Factor Calculations”
E. Thomas Moyer Jr., ASTM STP #969, to appear, July 1988.

"An Overview of the Finite Element Method for the Analysis of
Engineering Metals", E. Thomas Moyer Jr., in Computer Simulation in
Materials Science, ASM International, 1988.

"Effect of Specimen Thickness on Crack Front Plasticity
Characteristics in Three Dimensions", E. Thomas Moyer Jr., Proc. 6th
Intl. Congress on Fracturz, New Delhi, 1984.

"Biaxial Load Effects in the Mechanics of Fracture"

E. Thomas Moyer Jr. and Harold Liebowitz, Journal of the Aeronautical
Society of India, Vol. 36, pp. 17, 1984.
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APPENDIX B_- STUDENT THESES UNDER ONR CONTRACT #N00O14-84-K-0027

1] Determination of Two Dimensional Stress Intensity
By: Peter Bauerle, 1985, Diplome Thesis.

2] Fracture Under Mixed Mode lLoading
By: Roland Gerstner, 1985, Diplome Thesis.

3] The Nodal Force Approach for Mixed Mode Stress Intensity Factor

Calculations in Three Dimensions
By: Kornelius Hengle, 1987, Master of Science Thesis.

4] Ductile Crack Growth Simulation - Local Deformation and Field

Variable Analysis
By: Kurt Kunze, 1987, Master of Science Thesis.

5] Local Crack Tip Field Quantitjes with Ductile Material Behavicr for
General Mixed Mode Problems

By: Martin Haegele, 1988, Master of Science Thesis.
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APPENDIX C: FRACTURE TESTS ON IN 718 -

INSIGHT INTO CREEP FRACTURE BEHAVIOR
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FRACTURE TESTS ON IN 718 -
Q{ INSIGHT INTO CREEP FRACTURE PHENOMENA

E. T. Moyer, Jr. and H. Liebowitz

The George Washington University
ABSTRACT

Fracture tests on IN 718 superalloy demonstrate that the
C* fracture parameter is not a sufficient quantity for the
quantitative description of creep crack growth. The results
contained in this communication show that the crack velocity is

*
not uniquely predicted by C but is also a function of test

—- PR

(: load. In addition, the results indicate that the crack
velocity would also be affected by geometry changes (e.g.,
specimen size).

The results presented in this communication also demon-
strate that crack growth initiates extremely early in the test
history. No unique initiation time was identifiahle. Also
evident is a two stage growth process with stage 1 (charac-
terized by constant crack velocity) contributing significantly
to the total useful life even at relatively high initial crack
velocities (on the order of 0.001 inches/minute).

Investigation was made into the widely observed scatter in
creep fracture data reported in the literature. This scatter

is often suggested to be due to crack tunneling, material

> . _‘ '\ _'. e I
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variability, etc. The results presented in this work show that
initial crack front curvature, irregular geometries, forming
inconsistencies (e.g., rolling irregularities) cause extreme
scatter in experimental results. These irregularities,
however, are observable continuum phenomena which are incon-
sistent with the assumptions inherent in the analysis of the
test data. When specimens exhibiting these irregularities are
removed from the data base, scatter is reduced to acceptable
levels (e.g., less than 10% in measured quantities). The
fracture surfaces also indicate that tunneling does not occur
for the geometry, loading, temperature and material conditions

studied.
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o FRACTURE TESTS ON IN 718 -
INSIGHT INTO CREEP FRACTURE PHENOMENA

E. T. Moyer, Jr. and H. Liebowitz

The George Washington University

A series of constant load creep fracture tests were
performed on IN 718 specimens at 650°C. The specimen geometry
was standard compact tension with dimensions (a = 1.0 in.,
W=2.0 in., B = 0.4 in.). Tests were run for load levels
between 1000-1500 1b. Mouth opening displacement and crack
length were monitored continuously during the test. To

establish a sharp initial crack, the specimens were fatigue

( ; i

precracked at room temperature at 15 Ksi - vin. Crack length

is measured optically to a precision of 0.0015 in.’

The first Figure is a plot of the crack length vs time at
five different load levels. All the data indicates a two stage
crack growth process. The first stage 1is charaétérized by
essentially constant crack velocity (the linear portion of the
crack length vs time curve) and the second stage is character-
ized by continuous acceleration. For the growth range studied,

stage 1 crack growth accounts for a significant portion of the

P
e, .

growth history (at 1000 1b., stage 1 accounts for approximately

e

65% of the time required to increase the crackllength 40%; at

f‘_{ ‘l ‘_f I

1500 1b., stage 1 accounts for approximately 40% of this time

X
h

history). At the load levels tested, crack growth was observed
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5 X very early in the history. A unique '"initiation' time was not
»ﬁ identifiable.
o . Ny
. The crack length vs time curves clearly indicate that

stage 1 growth is evident even when initial crack velocities
are of a '"average' magnitude. Previous studies have indicated
that stage 1 is present only for very slowly growing cracks
{(1]. In the data presented here, initial crack velocities
varied by almost an order of magnitude and all tests exhibit
stage 1 behavior for significant portions of the growth history.
The second Figure is a plot of crack velocity (da/dt) vs
C.. The formulation of Kumar and Shih (K-S) is used for the
calculation of C* {2]. This formulation is to be preferred to
the Harper and Ellison (H-E) Eormulag{on for two reasons:
first, the assumptions made in the derivation are less restric-
tive (e.g., zone size requirements in the H-E formulation,
proportioning of deformation due to crack growth and creep,

etc.) and second, because the K-S formulation requires only a

knowledge of the geometry and loading and not the load line
displacement rate (which is measured less accurately). Indeed,
for reasonable crack velocities, the H-E formulation can be
shown to be a measure of da/dt and not C* [31.

The da/dt vs C* plot 4dcmonstrates that the C* is not a
sufficient parameter to describe crack growth. It has been
postulated in the literature that da/dt can be uniquely related
to C., independent of loading and geometry (see, for example,

(4,5]). The results presented by the authors demonstrate that
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da/dt is a function of the test loading in addition to the
parameters involved in calculating C*. This is understand-
able as during stage 1 growth, C* is steadily increasing while
da/dt remains constant. In addition, convergence toward a
unique da/dt vs C* relationship is not evident until the crack
velocity and length have grown appreciably. At the larger
da/dt values, many of the assumptions required for the
application of the K-S formula become dubious. In the region
in which the K-S assumptions are valid, the results demonstrate
that C* is not a sufficient correlating parameter.

For the range of geometry and loading presented in this
work, K is not a viable fracture parameter. At 1000 1lb.

loading, the stress intensity factor calculated from the mouth

opening displacement reached a value of 27 Ksi - vin. prior to

crack growth where the linear elastic K value was 17 Ksi - vim.

corresponding to the load. It was evident, therefore, that the
creep deformation exceeded the K controlled region from the
start of the test. K, therefore is not a viable fracture
parameter for this data.

Creep fracture studies often exhibit much experimental
scatter. Many reasons are proposed including environmental
effects, deformation transitions, tunneling, mechanism transi-
tions, etc. Data which exhibits large scatter cannot be used
to establish or reject the validity of any theoretical model as
the error in the data can be on the order of the phenomena

being described. To minimize scatter in our results, data was

wRse T EReTR W T TS T A T T T
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only taken in the range where oxidation effects are small.
Oxidation influences are a function of the test duration and
the local strain state near the crack [6]. The presence of
oxidation can be seen on the fracture surface as a change in
color from the standard metallic color to a blue color. Only
data obtained before the color change became appreciable was
used in the analysis.

In addition to avoiding oxidation driven growth data,
closer examination of the fracture specimens revealed observ-
able causes for the scatter observed. Several specimens which
exhibited data far from the mean had extensively curved crack
fronts after fatigue precracking. These specimens tended to
exhibit much slower crack growth than those withnrelatively
straight crack fronts. If extreme curvature was exhibited in
the fatigue crack (greater than approximately 1/16 in.) the
data was rejected.

Photo 1 and Photo 2 show fracture specimens whose data
were excepted (number 1 was loaded at 1000 1lb. and number 2 was

loaded at 1500 1b.). Both exhibit typical fatigue cracks which

produced consistent data. Photo 3 shows a specimen which was
loaded at 1000 1b. The data from that test exhibit twice the
lifetime of the mean at that load. The geometric discontinuity
introduced by a machining error (the kink in the notch) caused
the crack to grow in a uneven manner prolonging life.

Other scatter occurred due to discontinuities in the

material. Photo 4 shows a specimen which was loaded at
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A N 1500 1b. The fracture surface discontinuity again prolonged
fj ‘ the 1ife of the specimen. This discontinuity is believed to be
st
M caused by imprecision in the rolling process during forming.

A/

44

None of the sources of scatter described could have been pre-

- P
»

-

~r dicted without examination of the fracture surface. These
‘Yl

a8
hont phenomena, however, are not due to material variability or
,.\.r
gl . . < .
! microstructure. All the observations are continuum irregu-

& .

PR
"
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larities which are inconsistent with the analytical assumptions

72; of continuum crack growth.
Eéf After discarding the specimens with continuum disconti-
!j nuities, the data exhibited very little scatter from test to
;;ﬁ test. The data presented in this work is the average of that
:H; ( obtained from multiple tests. The test to test differences in
{;5 h  crack length was less than 5% and thé_difference"in crack
:E; velocities was less than 10%. Mouth opening displacements were
;25 contained within a scatter band of approximately 3% with
ﬁé: deviations in opening rate of approximately 7%. It is felt
;ZE: that these numbers accurately represent the '"scatter' which is
2
 %& due to testing configuration, material variability (which
’?i should be small since all specimens are from a single batch of
f%é material, were heat treated identically and were cut in the
ixf same direction relative to the rolling) and microstructure.
:Ef The data presented demonstrate the inability of either C* '
\za or K to be a valid constitutive parameter for creep crack
\i? growth in IN 718 at 650°C. In addition, these results viewed |
'if; :;3 with other investigators' work (for various materials, e.g.,
o, ="
%
a
.
% srieeces
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{1,5,6]), demonstrate that a valid fracture parameter charac-
terizing creep crack growth behavior for a realistic range of
geometry and loading has yet to be found. In addition, new

insight into the '"'Sources of Scatter' have been identified.

This testing sequence suggests that continuum reasons for
observed scatter can often be identified which violate the
continuity assumptions inherent in the test procedure and

analysis.
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vy APPENDIX D: LOCAL CRACK TIP FIELD QUANTITIES WITH DUCTILE

S MATERIAL BEHAVIOR FOR GENERAL MIXED MODE PROBLEMS
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ABSTRACT

In the present work, local crack-tip field quantities under ductile material behavior
were studied for mixed-mode loading ranging from pure mode | to pure mode Il under the
assumption of plane strain. In order to become independent of a specific specimen, the local
crack-tip region was modeled as a disk with the crack tip at its center. Based on the
assumption of small scale yielding, displacements evaluated from the linear elastic solution
were applied on the model boundary. For ten comparable cases of mixed-mode loading the
body response was calculated using the J, flow theory of incremental plasticity employing

small strain theory. The finite element mesh employed consisted of 1178 eight node plane
strain elements and 3643 nodes.

In the evalution of the results emphasis was placed on :

i) The investigation of field quantities in terms of their exposed singular behavior,
magnitude and distribution inside the plastic zone

ii) The examination of the influence of mixed-mode loading on the singular behavior of the
field quantities and the validity of the HRR singular field for mixed modes

iii) The discussion of the strain energy density as a criterion predicting onset and direction
of crack growth for mixed mode loading with ductile material behavior and

iv) The determination of the stress functions from the finite element results and their
comparison with the numerical calculation of an asymptotic solution.
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Figure 17 :  Eftective von Mises stresses around crack tip. Radius r = 0.4 mm for
selected mixed-mode cases.

Figure 18 :  Full logarithmic representation of effective von Mises stresses along line
' 6 = 0° for all mixed-mode cases considered.
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Figure 19 : Tyy - Stresses along line 8 = 0° for selected mixed-mode cases.

Figure 20 :  Equivalent von Mises stress around crack tip. Radius r= 1 mm.
Stress intensity factor ratio : Ki/K) = 2230/0.

Figure 21 :  Equivalent von Mises stress around crack tip. Radius r= 1 mm.
Stress intensity factor ratio : K{/K| = 1927/987.

J,ﬂ
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;: Figure 22 :  Equivalent von Mises stress around crack tip. Radius r= 1 mm.

-1;: Stress intensity factor ratio : Ki/Kj = 1683/1252.

!_ Figure 23 :  Equivalent von Mises stress around crack tip. Radius r= 1 mm.
= Stress intensity factor ratio : Ky/K;; = 1405/1462.

~

_:- Figure 24 :  Equivalent von Mises stress around crack tip. Radius r= 1 mm.

C Stress intensity factor ratio : Ky/Ky = 772/1774.
a C

j_: Figure 25 :  Equivalent von Mises stress around crack tip. Radius r= 1 mm.
R Stress intensity factor ratio : K/K; = 396/1903.

N
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Figure 26 :  Equivalent von Mises stress around crack tip. Radius r= 1 mm.

) Stress intensity factor ratio : KyK; = 0/2018

‘f: Figure 27 :  Equivalent von Mises stress around crack tip. Inner radius 1 mm, outer
o radius 10 mm. Stress intensity factor ratio : Ky/K, = 2230/0.

b .

; Figure 28 :  Equivalent von Mises stress around crack tip. Inner radius 1 mm, outer
radius 10 mm. Stress intensity factor ratio : Ki/K; = 1927/987.
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"‘_- Figure 29 : Equivalent von Mises stress around crack tip. Inner radius 1 mm, outer
b radius 10 mm. Stress intensity factor ratio : K/K; = 1683/1252.

|

0 Figure 30 :  Equivalent von Mises stress around crack tip. Inner radius 1 mm, outer
o radius 10 mm. Stress intensity factor ratio : Ky/K; = 1098/1633.
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S Figure 31 :  Equivalent von Mises stress around crack tip. Inner radius 1 mm, outer
;- radius 10 mm. Stress intensity factor ratio : K/K;; = 772/1774.
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Figure 32 : Equivalent von Mises stress around crack tip. Inner radius 1 mm, outer

radius 20 mm. Stress intensity factor ratio : Ky/K; = 396/1903.

Figure 33 :  Equivalent von Mises stress around crack tip. Inner radius 1 mm, outer
radius 20 mm. Stress intensity factor ratio : K/K; = 0/2018.

Figure 34 :  Equivalent plastic strain around crack tip. Radius r= 1 mm.
Stress intensity factor ratio : Ki/K; = 2230/9.

Figure 35 : Equivalent plastic strain around crack tip. Radius r= 1 mm.
Stress intensity factor ratio : KK = 1927/987.

Figure 36 :  Equivalent plastic strain around crack tip. Radius r= 1 mm.
Stress intensity factor ratio : K¢/K; = 1098/1633.

Figure 37 :  Equivalent plastic strain around crack tip. Radius r= 1 mm.
Stress intensity factor ratio : K\/K; = 0/2018.

Figure 38 : Equivalent plastic strain around crack tip. Inner radius 1 mm, outer
radius 10 mm. Stress intensity factor ratio : Ky/Ky = 2230/0.
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L\ Figure 39 : Equivalent plastic strain around crack tip. Inner radius 1 mm, outer
radius 10 mm. Stress intensity factor ratio : K|/K; = 1927/987.
Figure 40 : Equivalent plastic strain around crack tip. Inner radius 1 mm, outer
radius 10 mm. Stress intensity factor ratio : K/K| = 1405/1462.
Figure 41 : Equivalent plastic strain around crack tip. Inner radius 1 mm, outer
radius 10 mm. Stress intensity factor ratio : K\/K) = 772/1774.
Figure 42 :  Equivalent plastic strain around crack tip. Inner radius 1 mm, outer
radius 20 mm. Stress intensity factor ratio : Ki/K; = 396/1903.
e
. Figure 43 :  Equivalent plastic strain around crack tip. Inner radius 1 mm, outer
oo radius 20 mm. Stress intensity factor ratio : Ky/K; = 0/2018.
Figure 44 : Deformed Mesh, outer radius r= 1mm.
i Stress intensity factor ratio : Ky/Ky = 2230/0.
.€
0 Figure 45 :  Deformed Mesh, outer radius r= tmm.
‘.:j’, Stress intensity factor ratio : K/K) = 1927/987.
v ;‘ Figure 46 : Deformed Mesh, outer radius r= 1mm.
N Stress intensity factor ratio : K|/K| = 1405/1462.
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Figure 47 :  Deformed Mesh, outer radius r= tmm.
Stress intensity factor ratio : K{/K) = 1098/1633.
Figure 48 : Deformed Mesh, outer radius r= 1mm.
Stress intensity factor ratio : Ky/K; = 0/2018.
Figure 49 : Crack deformation. Plotted crack length 10 mm.
Stress intensity factor ratio : Ky/K) = 2230/0.
Figure 50 : Crack deformation. Plotted crack length 10 mm.
Stress intensity factor ratio : Ki/K; = 1927/987.
Figure 51 :  Crack deformation. Plotted crack length 10 mm.
Stress intensity factor ratio : K{/K;; = 1098/1633.
Figure 52 :  Crack deformation. Plotted crack length 10 mm.
Stress intensity factor ratio : K/K|; = 0/2018.
Figure 53 : Deformed and undeformed meshes. Inner radius 1 mm, outer radius 10 mm.
,- Stress intensity factor ratio : K\/Kj = 2230/0.
( Figure 54 : Deformed and undeformed meshes. inner radius 1 mm, outer radius 10 mm.

Stress intensity factor ratio : Ki/K;y = 1683/1252.

Figure 55 : Deformed and undeformed meshes. Inner radius 1 mm, outer radius 10mm.
Stress intensity factor ratio : K/K; = 1098/1633.

| ,.;: Figure 56 : Deformed and undeformed meshes. Inner radius 1 mm, outer radius 10mm.
iy Stress intensity factor ratio : K\/Kj = 0/2018.
» Figure 57 :  Strain energy density along a circular path around the crack tip for

selected cases of mixed-mode loading. Radius r= 1 mm from crack tip.

Figure 58 :  Full logarithmic representation of the strain energy density along the
iine 8 = 0° for selected mixed-mode cases .

Figure 59 :  Graphical illustration of the interval halving method.

Figure 60 :  Angular variation of the stress functions &, .0 gg .0g and &g
Stress intensity factor ratio : K/K; = 2230/0.

Figure 61 ©  Angular variation of the stress functions &, .G gg .0 and T g,
Stress intensity factor ratio : K/K; = 2222/175.




Figure 62 :  Angular variation of the stress functions &, .0 gg .0¢ and &g
Stress intensity factor ratio : K/Ky = 2107/670.

Figure 63 :  Angular variation of the stress functions &, ,0gg .F¢ and T g,
Stress intensity factor ratio : Ky/Ky = 1927/987.

Figure 64 :  Angular variation of the stress functions &, ,0gg .0g and &g
Stress intensity factor ratio : K{/Ky = 1683/1252.

Figure 65 :  Angular variation of the stress functions &, ,0gg .T¢ and T rg.
Stress intensity factor ratio : Ky/K; = 1405/1462.

Figure 66 :  Angular variation of the stress functions & ,0gg .0¢ and o rg.
Stress intensity factor ratio : Ky/K; = 1098/1633.

Figure 67 :  Angular variation of the stress functions & ,Ggg .0 and o ,g.
Stress intensity factor ratio : K(/Ky = 772/1774.

( Figure 68 :  Angular variation of the stress functions &, .0 gg .0 and T g
Stress intensity factor ratio : K|/K; = 396/1903.

Figure 69 :  Angular variation of the siress functions o, .Tgg .Tg and 5',9_
Stress intensity factor ratio : K/K|; = 0/2018.

Figure 70 :  Ratio of o gg/0 g along the line 6 =0° for selected mixed-mode cases.

Figure 71 : |, versus plastic mixity parameter MP! for all mixed-mode cases
considered. Comparison with the values of |, obtained by Shih [27].
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Table 1 : K - Kj; -values according to the fracture criterion by Sih.
Table 2 : Shape functions of the eight node isoparametric plane strain element.
Table 3 : Chemical composition and material data of the stainless steel A304.
Table 4 : Comparison of J-integral values obtained by the virtual crack extension

method and the direct integration method.

Table 5 : Powers characterizing singular behavior of the effective von Mises stress

along the line 8 = 0° ahead of the crack tip.

( Table 6 : Fracture angle 6 and corresponding strain energy density 0.4 mm from the
crack tip for all cases of mixed-mode cases considered.
Table 7 : Powers of the singularity of the strain energy density in the vicinity
of the crack tip along the line 6=0° from least square approximation.
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LY a crack length
2 . engt
4 X a flow vector

) 3 nodal displacement vector

-,
:& A slope of the uniaxial stress-strain curve
BN
oy o] vector of body forces
o

:: B strain-displacement matrix
( ‘ @ element mapping matrix
o C constant term
i D radius of the HRR field
t
:& D linear elastic constitutive matrix

. Dep elastic-plastic constitutive matrix
j E Young's modulus

5 Bl gl stress functions for linear elastic material behavior
{ ‘ ( f yield criterion

52 £ nodal force vector
7
‘ *.{-: fo nodal force vector caused by body forces
B fs nodal force vector caused by surface tractions

e F function
o gil. g displacement functions for linear elastic material behavior
o
- G global energy release rate
'-_; G, Gy energy release rate in x - and y -direction
::: |
oo n constant
-
::I- Jy, Ja J-integral refering to crack extentions in x - and y -direction
Q. Jk J-integral vector

e Jres resultant J-integral value of the J-integral vector
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?ln, \ N . .
H Ky, ko stress intensity factor refering to mode | and mode |
.
j%:_ K| = kyVr stress intensity factor, mode 1
R4
Y . .
i~ K\ = koVm stress intensity factor, mode Il
e’ N\
-
;\-3 K element stiffness matrix
it Kt tangential stiffness matrix
[ ¥
;:'.. [ length
W n strain hardening index
_’ ' N; shape fanctions for element nodes
« ) ‘n‘
oo N shape function matrix
-Jl,‘_"» .
) r radius
o
e ro inner radius of the HRR field
i s distance
-2 s vector of surface forces
O S quadric strain energy density functional
' ( I vector of surface tractions
l\.‘. N N .
- u, v displacement components in x - and y -direction
-)'._-' .
o~ u displacement vector
}':-}' u displacement function
;) S quadric strain energy density functional
W,
:.::.: v volume
~j.':: w strain encrgy density (general)
) Chd
J A
N We external work
L.
‘1\ W, internal strain energy density
o X, ¥, 2 cartesian coordiantes
s
o)
?.~‘ a material constant
, a vactor of polynoial coefficients
" . .
. -’-.:, B angle of crack inclination
.'" - 7 exponent
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w0
N
s
. \Q"
¢ r boundary
S . . .
e interpolation polynomial
1‘ ')-.‘ .
b é vector of u; displacements of an element
p .\1.‘
o € strain
)
: [ vector of strain components
4 \"\
3 ~
E:“ 8 angle (general)
)
o ] angle of crack extention
e 0 g .
( ‘ K hardening parameter
34
g - »
o w shear modulus
o
e .
) ¥ residual force vector
‘X
“hY}
'S o stress
i fed vector of stress components
s
ot o stress functions
SO
RN T shear stress
A
( N X u Poisson's ratio
P ~.!:J
) €.n intrinsic coordinates
b
e
uy .
0) Subscripts
v
Lo R . .
_e,j o components referring to cartesian or polar coordinate system
.--
LR cr critical
LN
° 8 elastic
A .
TN pl plastic
'-:::: min, max maximum, minimum
55 .
SON y yield
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o Superscripts
- T transpose
. 0‘1,
N
::j::
xv
)
A
o
A " L T Y
Pur m o, - L) L " PN ™ T B T R e G D N N A N L L ) ey e NN S N T A X




- o n
x

YRR EERTY B

i

' ‘.—';"<"’

SN 1“‘:555-

v,
D ALY )

‘: ';‘ S

IR

L2

-

P

2

AP

L

TR Tl

Historically, conventional stress analysis was based on the assumption of flawless
material behavior. Since the existence of crack-like flaws cannot be preciuded in any
engineering material, fracture theories had to be developed which account for local stress
concentrations.

The significance of intense and localized concentration of stresses around sharp notches
was first emphasized by Inglis [1]. He realized through considerations of the stress
concentration around an elliptical hole that the stress becomes infinitely large at the tip of a
sharp crack. Based on the ultimate stress concept, this would indicate that a cracked
component cannot sustain any loading.

Griffith [2,3] applied energy conservation principles to the problem of a cracked glass
plate. This work set the theoretical foundation for the field of continuum fracture mechanics.
Irwin [4] and Orowan [5] subsequently modified the original Griffith theory so that it could
be applied to metals by adding a term involving the plastic energy dissipation rate in the
plastically deformed region near the crack tip. Due to difficuities in the practical
application of the energy balance concept, new approaches had to be found to characterize the
material behavior under the influence of a sharp crack. Irwin [6] was able to utilize the
cracked body solutions of Westergaard [7] to establish a relation between the strain energy
release rate G, (a global parameter) and the stress intensity factor K (a local crack tip
parameter). These stress intensity factors can be related to three independent local
movements as shown in Figure 1. These are categorized as :

- Mode |, or opening mode
- Mode i, or sliding mode

- Mode lll, or tearing mode.

Any crack deformation in the case of linear elastic material behavior can be idealized by the
appropriate superposition of theses cases. Unlike the brittle glass considered by Griffith,
most metals exhibit the phenomenon of ductility. Crack tips are, therefore, engulfed by
plastic yield zones with finite stresses.

Early attempts to model the plastic deformation surrounding the crack tip were based
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{ upon extensions of the linear elastic fracture mechanics (LEFM). Irwin [8] broadened the
'\:E applicability of LEFM by introducing a modified stress intensity factor Kp. At the same time
’ ':: Wells [9] established the crack opening displacement (COD) as a parameter governing crack
N extension even beyond general yielding. Dugdale [10] extended the COD approach and
"‘) established a relation between a plastic zone estimate around the crack tip and the crack
\2\ opening displacement in thin sheets.
E.::S A significant contribution to the field of elastic-plastic fracture mechanics (EPFM) was
s the introduction of the path independent J-integral. This integral (originally derived by
o Eshelby [11] and Cherepanov [12]) was introduced into the field of fracture mechanics by
'_CE: Rice [13]. Begley and Landes [14] showed its applicability as a parameter describing the
:'.:E\ stress concentration at the crack tip and suggested the use of a critical J-integral value J)¢
." to predict the onset of stable crack growth.
\ Several attempts have been made in recent years to arrive at a more general definition of
: the J-integral which would minimize the assumption of elastic material behavior and the
\ absence of body forces while still retaining its desirable features. Some of the proposed
i‘{. formulations extend the definition of J to axisymmetric three dimensional problems, others
:J_ consider more general loading conditions [15-20].
: S’ Hutchinson [21] and Rice and Rosengren [22] independently determined the
.‘TZE characteristic singular behavior of stresses and strains inside the plastic zone (using
. ) deformation theory of plasticity) where elastic strains are negligible compared to plastic
\\ strains. This zone is commonly referred to as the HRR singular field due to its distinct
N singular character in terms of stresses and strains. In their analysis, which took full
~. advantage of the path independence of the J-integral, they showed that stress, strain and
,.- displacement components can be related to dimensioniess functions. These functions are only
::';E dependent on the hardening characteristics of the material and whether the material is in a
‘* state of plane stress or plane strain. Stress, strain and displacement components inside the
E" HRR field are, therefore, determined by an appropriate stress, strain or displacement
oo function and a singular term involving the J-integral value which characterizes the
amplitudes of these fields. The validity of expressing crack-tip quantities in terms of the |
-I:_j:? HRR singular solution has been shown by a number of scientists [23-26]. Shih [24] ‘
. - established (through considerations of the displacement function of the HRR-theory) a
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relationship between the J-integral and the COD-concept and proved the similarity of both
concepts. This analysis assumes that the HRR field dominate the region around the crack tip
having a size of at least ten times larger the crack-tip opening displacement.

Shih [27,28] applied the HRR singular field solution to the case of a body under mixed-
mode loading. The stress, strain and displacement functions in this case depend on the
relative composition of mode | and mode Il directly ahead of the crack. The J-integral, in
combination with a parameter sensitive to the composition of mode | and mode II, governs the
amplitude of the singular field.

Though many cracks in structures may be initially under mixed-mode conditions, most
research in the field of fracture mechanics is focused on the study of fracture behavior
under pure mode | conditions. The major reason for this is the general observation that a
crack subjected to mixed-mode loading tends to grow toward a mode | condition. The main
interest in mixed-mode fracture mechanics, therefore, is focused on determining criteria
which predict the onset of crack growth and the angle of crack extension in relation to the
existing crack. In contrast to pure mode | where the criticai value Jic has been employed to

predict the onset of crack growth, this quantity is no longer valid for mixed-mode conditions
since the crack usually does not extend in its own plane. The most promising concepts of
mixed-mode fracture criteria are therefore based on energy principles, i.e. the maxima or
minima of either the total strain energy density or of its components {29-32]. Both the
concept of the strain energy criterion, introduced by Sih [29] and the T-criterion suggested
by Theocaris [33] have been extended for use in the elastic-plastic regime. Since these
criteria are of local nature, they depend on the local stress and strain response of the
material.

In the analysis of cracked bodies, the finite element method has become the major
numerical technique for the solution of fracture problems (both linear and noniinear). The
theory of incremental plasticity, which is usually incorporated in modern finite element
programs, relates incren 1ts of stress to increments of strain. The formulation of the
incremental theory of plasticity accounts for elastic unloading effects and has been very
successful in simulating ductile material behavior.

In the present investigation local crack-tip field quantities were examined for mixed-
mode loading ranging from pure mode ! to pure mode Il. A ductile material was modeled and

the commercial finite element package ABAQUS was employed to perform the calculation. All
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considerations were based on the assumption of small scale yielding which requires the
plastic zone to be small relative to other dimensions (i.e. crack length or specimen size).

Although a variety of mixed-mode fracture specimens have been suggested in the past
{34,35], there is still no universally accepted standard mixed-mode specimen. In this
work, therefore, the local crack-tip region is modeled without employing a mixed mode
fracture specimen. Displacements on the boundary are calculated by assuming elastic stress
intensity factors for both mode | and mode Il a priori. These displacements are applied to the
boundary of the local crack-tip region.

Ten loading combinations which span the range from pure mode | to pure mode I were
investigated. The J-integral values were calculated to measure the strength of the field
singularities. Stresses, strains and both total and elastic strain energies were examined
with respect to their singular behavior and angular variation within the plastic zone.
Details of plastic zone sizes and shapes as well as the crack blunting under varying mixed
mode | and I contributions were investigated. The stress functions for all investigated cases

were determined as well as paramelers describing the amplitude of the plastic near-tip -
field.
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The stress and displacement fields around a crack in a linear elastic material have been
investigated by a number of scientists. Although a basic solution was worked out by

Muskhelishvili [36], Westergaard (7], Williams {37],

Irwin [6] and Sih [38] solved the

same problem using different approaches. A decisive step in linear elastic fracture
mechanics (LEFM) was the introduction of the stress intensity factor K by lrwin [6]. His
work employed using Westergaard's solution for the near-tip stress field of a cracked body.

If the elastic solution for a cracked body is available, the stress intensity factors, K; and K,
can be defined as :

K, = lim o (r.8=0)(2nr 172
| = lim &y (,0=0)(2m)

K" = lim O'XY(I’.G-O)(ZII')VZ.
r—=0

(2.1)

Both stress and displacement fields are based on the linear theory of elasticity and may,

therefore, be superimpos~ 1. The stresses and displacements under combined mode | and mode

Il can be written as for the coordinate system (given in Figure 2 ) :

O’X X
(e
yy
(o8
Xy
Rt
oy
J_x . '\. .'),ﬂ. 4

L o o o
"\-'\\-."‘J.r.‘._,_’. ..)

., .8 3g ] B 6 38
1'5 n— | [} ca— - — — —
'251n2 sm [stzcos ]
K 9 .8 . 3¢ K 8 6 39
- ——l-cos=| 1+sin= sin'= 1 = —
~/2nr°°52 + 2 +42nr sm2 oos2 0052
.9 .39 ) . .38
sm2 sin-3 °°52[ 1-sm2 sin3 )|
e —d . —
(2.2)
3
u Ky o« (1+U)[(2x-1)cos§-cos—29-
= 2_§‘j 2r ) 3 +
v (14 u)[(2K+1)sm-2-- sin=Z ]
1+U 2 3)sin = in3.8
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where E is Young's modulus,
v is Poisson's ratio and

Kk is given for the case of plane strain as x = 3-4u .

By expressing equation (2.2) in the form :

K K T
Tija L ¢! ¢
: Nanr fii(e)"'\IZﬂ:r ”(6)
(2.3)
K Kiy
Ui = —'- L I S — — “
! 25‘12“ g|(6)+ E\lzﬂ g|(e)
several characteristics of these solutions can be observed. The stress intensity factors
jf-f'-j depend only on the applied loading and consequently determine the intensity of the local field.
- ( The remaining terms depend on the spatial coordinates around the crack tip and determine
-:'.:- the distribution of the field. These subdivide into a singular 1/vr component and an angular
N component expressed by the geometric functions t;!, f;ll, gi! and g;ll.
>
Ve Higher order terms of the actual series solution have been neglected. More higher
o ordered terms need to be included if the field had to match outer boundary conditions. Eftis et
';;:: al. [39,40], in revisiting the stress and displacement fields of the one parameter
-\'
',::j representation given in equation (2.2), proved the inaccuracy of these relations for the
g
. case of biaxial loading. This stems from the arbitrary omission of the second term of the
P series expansion for the stress components which contain a term independent of the distance
1 E;f::; from the crack but dependent of the angular position around the crack tip. Eftis improved the
ﬁ::'j singular solution for the inclined crack under biaxial tensile load by including this term
' -
~d which finally affects only the x-component of the stress field. Theocaris et al. [41]
:-'I:j: developed a closed form solution solution of stresses and displacements of a slant crack under
:f:f-f biaxial tensile loading for arbitrary radius (r) away from the crack tip.
_o'. - lrwin [42] derived the relationship between the stress intensity factors and the energy
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release rate (G) for cracks extending in their original plane. For pure mode | and pure mode
Il (under plane strain conditions) these relations are given as :

- Ku
G= = - v) G =—0-d (2.4)

Energy release rates can be added for a crack remaining in its plane according to :

G =G|+ Gy (2.5)

For a linear elastic material subjected to pure mode | loading conditions the energy

available to create a unit surface is G;. The critical strength parameter governing failure,
therefore, can be expressed as Gig. This parameter can be related to the critical stress

intensity factor K;c by equation (2.4).
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In order to assure a comparison of field quantities for arbitrary ratios of stress intensity
factors, a criterion had to be applied which relates K;-values to a given K;-value. In
contrast to a pure mode | Griffith crack, a mixed mode crack does not necessarily extend in
its own plane. Since the direction of crack extent is not known a priori it would be incorrect

to obtain the mixed mode energy release rate by adding Gy and Gy;. In contrast to pure mode |

fracture analysis where the fracture criterion is founded on a given K,g-value, there is sill

no well established criterion for the case of mixed-mode fracture. The most widely used
mixed mode fracture criteria are [33,43-45] :

SN

- criterion of maximal tangential stress

. A

- various criteria based on the energy release rate

RAMOFRE
f a4 R £

- various criteria based on the energy density

r~

- criterion according to DiLeonardo
- principal strain criterion

- J-integral criterion

- modified T-criterion and

- various empirical criteria based on experimental K;-K;; failure curves.

The energy density criterion introduced by Sih [29] was chosen for two reasons:

- it is generally in good agreement with experimental results [29,47] and
- it provides a concise relationship between the critical energy density factor and the
stress intensity factors for mode | and |l

Y

D T T T e YRR JL AT P NP I P
..’_‘J('"J'..J"_I:\.F_'-:\J'._J_,-',‘-.‘_-- o e 4.-#\- - ._}

N

»
L)
|




3.1 THE STRAIN ENERGY DENSITY CONCEPT AS A FRACTURE CRITERION

Sih [29] proposed a criterion based on the strain energy density in the vicinity of a
. crack tip. For an elastic material the strain energy density is given in its general form as :

: aw, _ 1 J 1

. ) = (0240240 ,2) = (T T\ +TyT 2+ 20 )+ —= (T yy 24 Ty 2+ T, 52

; (dv) 2E(x y z)E(xy yTz+T 20x) zu(xy xy+Ty2%) @3.1)
".|

2.1
_ where E is Young's modulus,

Vol

- U is Poisson's ratio and

o

> W is the shear modulus.

-

°

- Substituting the stress components from the asymptotic linear elastic two dimensional
L

. stress solutions given in equation (2.2), the strain energy density can be obtained as:
(] ( dWy . S L1 (a0 .k42 & 220 ok Ko + apoks2) (3.2)
_ (57)= T =7@nk 12K1k2 + az2kz :
[

"

- The coefficients a;; are given as:

e

A
'~ a4q = ——[( 3-4u-cos6) (1+cosé )]

A 161
b

) ajp= 1_sine [cos@-(1-2u)]

8u

°

";I: gy = % [4 (1-u ) (1-cosB) + (1 +cos8 ) (3 cos8 -1)] .
::{ H

- It can be seen that the strain energy density is characterized by a 1/r singular term
e where r is the distance from the crack. The quadric term, S, in equation (3.2) can be
-

:: considered as a material constant [29] and varies only in the angle © around the crack tip,
:'_ Figure 2.

N.

.' . Determination of pairs of K|- K|, - values with respect to an assumed maximum value of
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Determination of pairs of K|- K|, - values with respect to an assumed maximum value of

K|c is based on taking advantage of two hypothesis formulated by Sih [29]:

1. A crack will extend in the direction of maximal potential energy.
2. The critical intensity S, of this potential field governs the onset of crack

propagation

The potential energy per unit volume, P, is defined as:

S
Pa-— | (3.3)

Therefore, P assumes a maximum if the following relations hold:

® 4. 3%, at @ =6g. (3.4)
96 BFT-L

The formulation of the stress intensity factors ky and ko for a crack inclined by an angle 8,

and of length 2a under tensile stress o ( see Figure 3 ) is given as:

ky =0 va sin2 g

(3.5)
ko=0c YasinBcosB .
Substituting these expressions into equation (3.2) yields an expression for S :
Saky2(ayysinB +2aypsin B cos B +ayycosB)sing . (3.6)

Again, according to the first hypothesis and equation (3.3), S has to be a minimum if P

shows a maximum. Differentiating equation (3.6) with respect to 6 and setting the result to
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b 3

N
A

iy 2 (1-2vu) sin (89 - B) - 2'sin [2 (69 - B)] - sin 284 = 0. (3.7)

Z

v
Ll

3

The critical values of K and K lie on a curve in the K|-K|; plane determined from equations

e

o (3.5) and (3.7).

qjs A FORTRAN program has been written to perform the outlined procedure to find pairs of
(‘ y K)-K  values for a given pure mode stress intensity factor K,. The material data are
-.:;:: presented in chapter 6.2. For values of 8 ranging from 0 to 1/2 equation (3.7) was solved
"'E';? numerically using the Newton-Raphson Method. Figure 4 shows the plot of K, values over Ki
: *t for an assumed pure mode | value of K; = 2230 N/V/mm372

_.:~.': Ten pairs of stress intensity factors which span the range from pure mode | to pure mode
-_:-Sf_: Il are given in Table 1 and will be referred to in all further considerations. These pairs of
‘5' stress intensity factors represent points on the K;-K;; curve which are the endpoints of

equal length curve segments.
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A characteristic of plastically deformable materials is that a particular material can
undergo different histories of response prior to the body reaching its end state.
Reversibility, therefore, cannot be guaranteed after load removal. The final strain is found
to be dependent on the history of loading, in addition to the beginning and final loading. This
means that plastic behavior is a path function and requires the use of an incremental theory
where strains are integrated over the strain path whenever the total induced strain is to be
determined. A common approach (employed in this work) is the incremental theory of
plasticity.

The deformation theory of plasticity is based on an assumed nonlinear elastic material
response. Plastic strains depend only on the current state of stress and are independent of
the path leading to this state. This theory (though contrary to the observed nature of plastic
behavior) is computationally far less expensive than the incremental theory and is
therefore widely used. Figure 5§ depicts the basic difference between these two basic
approaches in elastic-plastic modeling.

The incremental stress-strain relationship of an isotropic strain hardening material
can be derived on the basis of the following relations :

a yield criterion

- a yield function

- a flow rule

- the assumption of strain rate decomposition and
- the linear-elastic constitutive relation.

i ) Yield Criterion :

Various criteria have been suggested in the past to predict the onset of yielding in a
material subjected to loading. The Von Mises yield criterion, which is widely used, is

based on the assumption that yielding occurs when the second invariant, Jp, of the
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deviatoric- stress tensor reaches a critical value, Jy = 2/3 cryz. With the deviatoric

stress tensor s;; defined as :
L (4.1
The critical value of J, is given as:

(4.2)

The effective stress may be written as :

o=V %_[( Tx-Ty)2+(0 -T2 +(T 012 + 67,,2 + 67,2+ 67,,2]. (4.3)

ii) The Yield Function :

The amount of hardening of an isotropic strain hardening material can be expressed by
the amount of plastic work which is :

Wp=JUij (deij)paK (4.4)

where (deij)p is the plastic components of the strain differential and

kK is the strain hardening parameter.

The integral is path (history) dependent. Like the equivalent von Mises stress given by

equation (4.3), the equivalent plastic strain increment (ci<=.)p can also be obtained from

the second invariant of its incremental strain tensor (deij)p as :
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(de)p = ¥ Z{ (deij)p ([dei)p Jp - (4.5)

iii) The Flow Rule :

The flow rule governs the plastic flow after yielding and can be derived from various
yield criteria by using the concept of a plastic potential (f). This method proposes that

the incremental strains resuiting from a stress tensor O'ij are found by using :

df
A - ——
(deljlp A aa,u (4.6)
where f is termed the yield function and
x ( A is a constant.
'{:j: The strain history and its current magnitude can be determined by the yield function (f).
‘v._‘
' If the Jo flow rule is used , (see equation (4.3)) the yield function can be expressed as :
i
::'::: f(O’ij) = (sij Sij)a const - (4.7)
o
S
. 7. and
o
s
\.F' a f
-
7 3y, (48)
e iJ
4
, ~.::: Three cases of (df) are possible : s
o5
p Pl
Ov R df <0 : elastic unloading of an elastic plastic material occurs
o, e
4 -'.'I -
‘-‘:_.
o
ol 14
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o df = 0 : neutral loading of an elstic-plastic material and
D)

(: df >0 : plastic loading of an elastic-plastic material.

For the case where (f) is taken as the Mises criterion, given in equation (4.2), taking
ALY the derivative yieids :

Y at 3y

FU= = Sjj (4.9)

:Ij and equation (4.6) simplifies to :
P (deij)p=)\ sij (4.10)

o Fquations (4.9) and (4.10) are referred to as the Prantl-Reuss equations.

ey
7N

st iv) The Strain Rate Decomposition :

During an stress increment the resulting strain increments can be split into their
elastic and plastic part :

a_x '.-
"-\,

Y4y

dg = dgg +dSp (4.11)

. [
LI S

W4

v) Elasticity :

e %
s 2]
£l

« 0 l‘
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The elastic strains can be related to the deviatoric and hydrostatic stress components by
the relations :

LI

1+y 1-2y
(e.) S + Tl (4.12)
ij 3 E kk™ij
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RN Elastic and plastic parts can be added and the complete incremental relationship between
stress and strain for elastic-plastic deformation can be obtained as :

7 SeT eyt TE

ddijdo'kk* 7\Sij (4.13)

e It can be shown that the complete incremental elastic-plastic stress-strain relation can
be written as derived in [48,49] :

Nod dg = Depds (4.14)

. The elastic-plastic matrix Dep is given as :

oaew
T NS

ol Wb

o >

dpdp
A+ dTa'

Dep=R- ; dp=D a (4.15)

7™\

454

where A is the local slope of the uniaxial stress-strain curve and can be gained

222

=7 i) ‘n“‘.'; )

from the stress- strain curve of the given material,

[ V)

is the flow vector which is a partial differential of the yield critarion
with respect to its components and is given in equation (4.9).
is the elasticity matrix having the form for the case of plane strain :
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&1 THE FINITE ELEMENT FORMULATION FOR LINEAR MATERIAL BEHAVIOR

Today the finite element method is firmly established as a standard numerical procedure
for the solution of engineering problems. Its versatility is based on the following
characteristics:

- irreguiar geometries can be modeled
- any kind of boundary condition can easily be formulated and
- it provides sufficient accuracy for many engineering purposes.

Especiaily in the field of fracture mechanics, the finite element method has been proven
to be an efficient numerical method to model the response of a body under the influence of a
sharp crack.

SR The basic idea behind the finite element method is to divide a given structure, body or
X region into a number of elements. The elements can be two or three dimensional. A discrete
number of nodes situated on the element boundaries connect the elements. In structural
problems, the finite element method solves the response of a model which is subjected to a
given load by determining the nodal displacements. A set of interpolation functions (which
are referred to as shape functions) uniquely define the displacement state within each

element. The formulation of the shape function depends on:

- the number of nodes in each element (order of element) and
- the number of independent degrees of freedom in the problem considered.

The finite element formulation for a continuum can be obtained by taking advantage of the
formulation of the principle of virtual displacement (which is a special case of the principle
ot virtual work) or of the principle of minimum potential energy (which assumes elastic
body behavior).

In the following very brief introduction of the basic finite element formulation, only the

o two dimensional case will be considered.
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The principle of virtual displacement states that equilibrium is obtained if the work

done by external forces Wq on an arbitrary virtual displacement field equals the increase in

strain energy (W,) of the system [48]. This relation can be expressed in a variational form:

SWi = Wy . (5.1)

The principle of virtual work can be formulated as the volume integrals of the variations
in strain energy density and the sum of variations of external energies resulting from body

forces, surface tractions and point loads. Employing matrix notation, the variation in
internal strain energy density is given as:

SW,=[(6e)T g av (5.2)
( where ST represents the variation of the strain vector € = [ €x, €y, Txy 1T
and
o is the stress vector o = [ oy Ty Tyey JT.

The variation of the external work can be expressed as:
6We =/ (su)Thav+[(su)Tsdr + = (6u)T 1, (5.3)

where Sy is the variation of the displacement vector y = [ uy, up |7,
b is the vector of body forces b = [ by, by ]T ,
s is the vector of surface tractions s = [ sy, 52 )7,

[" is the boundary where surface tractions are applied and

fp are nodal forces.
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{ The finite element approach is based on the assumption that displacements within an
:'_-,:Z element are adequately described by a polynomial. The second order rectangle has eight nodes
SN . ) . . .
:j and its interpolation polynomial approximation to the displacement field is assumed in the
‘ ).
'~ form :
D)
i 2 2 2 2
bl P =y ¢+ A X + AJY * A4XS+ AgXY *+ AgyS + A7xy< +agxy  (5.4)
B, o
B
Lo
oy
__ In order to assure interelement compatibility, equation (5.4) must be complete in
PR
o,
.':;‘{ terms of a specific power. The eight constants, a;, can be evaluated by solving a set of eight
~
"{: simultaneous equations if the nodal coordinate are inserted into equation (5.4) and the
".! displacements equated to the appropriate nodal displacements. Performing this operation,
K < -
o equation (5.4) becomes :
b
N
o [

. E
Pl

~ ui= 00 X i 52, xyi vi2, xyi2 s x2yil . (5.5)
o we

o

J'_:-

. or :

)
o g=Ca (5.6)
\‘. .

o -
? ;\, where & is the vector of u displacements of an element & = [ uy, us , u3.. .,ug]T.
o

..
-:.f:-.f Solving equation (5.6) the vector of constants a can be obtained in terms of nodal

v

- displacements by :

e
ot a=C'g. (5.7)
L

) The vector g can be substituted back into equation (5.6) and :

:-.'ZZ u=CClg (5.8)
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is obtained. From this relation, the shape function matrix N can be obtained as :
U=N¢ (5.9)
where N is the shape function matrix N = [Ny, Np, ..., N7, Ng]T .

Similarly, equation (5.9) holds for the v component of the displacement vector. Equation
(5.9) can easily be generalized for the displacement vector y by writing :

u= Na (5.10)
where 2 is the nodal displacement vector a = [uy.vy, Ua,Vp. ... U7,v7. ug,vg|T
and
N is the shape function matrix N = [ [ Ny, I Np, ..., I Ns, | NS]T .

The isoparametric finite element formulation has proven very effective in structural
analysis. Isoparametric elements are characterized by the transformation of the element
geometry, into a square in 2 - D problems, using a local coordinate system defined by its
€-n coordinate axes, see Figure 6 . Axes € and n pass through mid points of opposite sides,
so that the edges are defined by €=t1 and n=t1. If the shape functions used to describe the
geometry and displacements of an element are the same then this element is cailed
isoparametric. The shape function of the employed isoparametric eight node parabolic
element are given in Table 2.

The displacement components of any point within the element are defined in terms of
nodal displacements. In equation (5.2) the matrix equation for the strain becomes :
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A

e
The matrix B is defined as :
™ 3N 7
ax 0
dN;
g - Y (5.12)
dN; oN;
| Ty x |

Assuming linear elastic behavior, the stress-strain relation is defined through the

generalized Hook's Law :
g=De=DBa (5.13)

where D is the linear elasticity matrix given in equation (4.15).

In the isoparametric finite element representation the shape functions N;, given in local
coordinates §, m, have to be differenciated with respect to global coordinates. The chain rule
must be applied o differentiate :

N _aN & N N dn (5.14a)
N ax & ox an dx
: '_., _: and
.,
f'!
N aN dN o€ dN dn
; = + 5.14b
3’,;:: dy & 9  In Jy ( )
'\,,,\-'
S
B
.’ The derivative (3€/9x) etc. can be evaluated from the inverse of the Jacobian matrix, J1
:,'r Using the Jacobian matrix the volume integral (when setting dz=1 for the case of plane
- - strain) becomes :
S g dxdy = (detd)d€ dn (5.15)
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Equation (5.15) can be substituted into equation (5.2). Empioying the stress-strain
relation of equation (5.13) and employing equations (5.10) and (5.11) the finite element
formulation (5.2).(5.3) can be given as :

{IBTDB(dety)dedn } a= fy+tg (5.16)

where fp is the volume integral of the body forces, f, =/ NT b det)de dn and

fs is the integral of the surface tractions, fs =J/NT 5 det ] d& dn.

The first term in (5.16) is referred to as the element stiffness matrix K . Equation
(5.16) can be numerically integrated using the Gauss-Legendre quadrature formula where
nine integration points are defined for the isoparametric plane-strain rectangle, see Figure

(i‘_-; 5. The integration is performed in the €, m space where the coordinates of the element side
< range from -1 to 1.

F | Vi

,;.: The described finite element method for linear elastic material behavior can be extended
'
to materials showing nonlinear behavior. For most problems in material plasticity an

N incremental algorithm is used. It is based on the incremental theory of plasticity where the
: plastic action is followed as it develops, and, therefore, accounts for the path dependence of i
plasticity.
The initial step of an elastic-plastic finite element calculation assumes linear elastic

< behavior. If yielding occurs at one or more nodes a system of residual forces W will exist,
. such that:
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v=/Bgav-(f+/NTbav)=0 (5.17)
where f is the vector of applied external forces. If the effective stress at one or more nodes

exceeds the yield stress, the material stiffness matrix is continually varied. Then
increments of strains are related to increments of stresses according to equation (4.14) :

dg=erdz (5.18)
where er is the elastic-plastic matrix given by equation (4.15). Equation (5.18) can be

substituted into (5.17) and a relation between an incremental load Ay and the increments of

the residual vector AY (which is usually not zero) is obtained as :

AY = Krau-(at+/NTabdv )= 0 (5.19)

where K; is the tangential element stiffness matrix in the elastic-plastic range and

is given as :
Ki=/BTDgpBav.
Equation (5.19) can only be solved iteratively according to the following steps :

1. Employing incremental displacements Ay in each iteration step r, an iterative

correction (&y)" is calculated using the Newton Raphson Method :
(W' =(Kr']"' ay’ (5.20)

2. At the end of each iteration the improved displacement estimate is:
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AU = Ayt + (Sw)f (5.21)

This value Au'+! is substituted in (5.19) to evaluate the residual force vector AY.
which is used in (5.21) to calculate the correction of the displacement.

This algorithm is repeated until the maximum of the residual force vector is smaller
than a user defined number. ABAQUS uses the modified Newton Raphson method where the

stiffness matrix K, calculated after each convergent solution instead of being modified after

each iteration. This results in a significant decrease in computing time.

2.3 GENERATION OF THE FINITE ELEMENT MESH

A central aspect of the application of the finite element method is the generation of an
appropriate mesh. The quality of the finite element mesh affects:

- the accuracy of the solution
- the amount of required computing time and
- the convenience of postprocessing the results.

Today, most finite element meshes are generated with the help of ‘a finite element
modeling program. For the present investigation the mesh of the mixed mode fracture model
was created on an IBM 5080 workstation using the CAEDS software packége [49]. CAEDS is a
computer aided design tool which provides the ability to model and analyze the behavior of
mechanical structures. CAEDS divides this task into three consecutive steps:

1. Geometry definition:
The model geometry is defined by points and their connecting lines. Subareas have to
¥
be defined in the model which help control pattern and density of the finite element

mesh to be generated.
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\ 2. Mesh Generation:
:‘c 5§ The mesh generation accesses the geometry of the model through defined subareas.
! N Concentration and configuration of the finite element mesh can be influenced by
! defining nodes or a node concentration on the boundary of the subarea. Thus the finite
::5 element mesh for every subarea is generated automatically in an exactly predictable
’,S manner.

Model Checking:

~ﬂ-
w

'f,'.:.‘: This module assures the correctness of the created mesh. Internal free edges, node
.i:; and element coincidence and element distortion can easily be detected and corrected.
::' Furthermore, the bandwidth and the profile of the stored matrix can be optimized and
the nodes of the model renumbered accordingly (which shortens the computing time
D significantly).
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For the present investigation, a disk shaped fracture model with a sharp crack was
modeled. The dimensions of the specirhen were mainly determined by the definition of small
scale yielding which limits the plastic zone size to approximately 20 percent of the
specimen size [27]. Therefore, for the given sets of K| and K|, values, the plastic zene size
was estimated using approximation formulas. Employing the plastic zone size estimation
formula by lrwin [8] yielded a maximum plastic zone size radius of o= 3.75 mm in the

case of pure mode ! (under plane strain conditions). The yield stress contour which is given
in Figure 7 for a selection of mixed modes indicates in the case of pure mode !l loading a

plastic zone size radius of approximately fo= 24 mm. The specimen radius was therefore

chosen to be 100 mm. The crack width was modeled as small as possible to produce a sharp
crack.

Conventional elements cannot simulate the singularities in the strain fields which exist
near sharp cracks in the case of elastic and elastic-plastic material behavior. Various
authors, therefore, have suggested finite elements which account for these singularities
without using large numbers of elements.

Henshell and Shaw [50] and Barsoum [51] proposed the use of isoparametric eight node
quadrilateral elements with midsize nodes displaced by a quarter of the edge length towards
the crack tip. This collapsed quarter point element produces a 1/Nr singularity in the
elastic strains. Barsoum [51] proposed that, in the case of crack-tip plasticity, eight
isoparametric eight node elements can be degenerated into triangular shape elements by
collapsing the element at their crack-tip nodes without shifting the midsize node, Figure 8.
All collapsed nodes at the crack tip remain unconstrained and have independent degrees of
freedom. It has been shown [52-54] that this causes three effects :
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::;,’ - a singularity of the order of 1/r is simulated in the approximation of the strain
7“3 components. This coincides very well with perfectly plastic material behavior in the
! near-tip field
:1'. : - the ability to reproduce large strain gradients is retained and
:ﬁ - spurious numerical unloading often encountered with the collapsed quarterpoint
3'_ element is eliminated.
(
:'. Comparison with analytical results performed by Shih [52] showed that this element
5: simulates the material response at the crack tip reasonably well. Barsoum {51], however
ﬂ\" has shown that this type of element possesses theoretically unbounded terms in the stiffness
'?r matrix but which are usually suppressed by the smoothing character of the Gauss-Legendre
'{;' quadrature.
'_:f.‘ Figure 9 shows the finite element mesh of the modeled specimen in the vicinity of the
"‘: crack tip. A fan of 24 degenerated elements with a side length of 0.04 mm defines the crack
( tip. The crack-tip width was modeled as 0.004 mm. Adjacent to this fan is an intermediate
-.‘ zone which connects the crack-lip fan to the main fan consisting of 23 circumferential
::: layers of 32 element segments, see Figure 10. Three circumferential element layers are
B

needed to model the boundary element layer of 16 elements, (Figure 11), where the
displacement components act on the outer nodes. The finite element model of the specimen
consists of 1178 elements and 3643 nodes. In order to investigate the accuracy of the finite

-~

element model, the elastic stress intensity factors were calculated. These agreed with the
input values to within 0.1 percent.
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8.2 MATERIAL
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The material properties of the stainless steel A304 [55] were used as the material data

input in the finite element calculation. This steel finds its main application in pressure
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containments in the high temperature range due to its ability to sustain high plastic
deformation beyond the yield stress. Table 3 lists the material data of the steel A304 and its
chemical composition given by Newman [56]. The stress-strain behavior of the employed
material was modelled using the Ramberg-Osgood relation.

In the case of the power
hardening simulation of the material response, the uniaxial stress-strain relation is given
as:

o
e=E for o < Ty

(6.1)
€ o (0')” .
— = — 4+ g(— oro > o
€y Iy Ty y

where o is the uniaxial tensile stress,

€y is the yield strain,
oy is the yield stress,

@ is a material constant which is given as 0.75 for the steel A304 and

n is the hardening index which is given as 6 for the present material.

Figure 12 shows the modeled stress-strain behavior of the employed steel A304.

rA '

The commercially available finite element package ABAQUS [57] was used for model
solution. Nodal coordinates and element connectivity generated by CAEDS can be accessed
through a universal file. A FORTRAN program has been written to both reformat the
universal file for the correct ABAQUS input and to correct the node numbering direction
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since CAEDS does not employ a consistent node numbering direction within an element. The
applied boundary displacements for all cases of mixed modes considered were calculated
according to equation (2.2). The element type CPES8 (eight node parabolic plane strain
isoparametric element) was employed in this model.

Based on the modeled stress strain curve of the employed material, discrete vaiues of
stresses and plastic strains had to be specified in the ABAQUS input. Element sets for both
data output and graphic display of deformed meshes and contours of specified variables were
defined.

For all cases considered, the model response for the elastic-plastic material behavior
was calculated using small strain theory. ABAQUS generates increment sizes automatically
and assumes a maximum number of six iterations per increment. This usually assures good
convergence at relatively short computing time.

While good convergence was obtained for cases of mixed modes with either predominant
mode | and mode |l contributions, the following four cases of mixed modes had to be

( subdivided into separate steps of increasing pairs of K- K values to obtain a convergent
solution :
- K|/ Ky= 2107/670
- K|/ Ky= 1927/987
- K/ K= 1683/1252
- K/ Ky= 1405/1462

Four increasing pairs of combinations of K| and K, values (of equal ratio) were assumed
which resulted in good convergence for each step. J-integral values, however, cannot be
obtained by ABAQUS if a calculation is subdivided into separate steps [57].

In order to permit an efficient postprocessing of ABAQUS data, a FORTRAN program has
been written which reads any variable from the data output file : ‘

along a line having a specified angle to the x - axis
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The J-integral, which was originally established by Eshelby [11], was introduced by
Rice [13] into the field of fracture mechanics. Rice showed that the potential energy

’?“"r[. £

release rate for a two dimensional crack extending in its plane in a homogeneous linear or
non-linear elastic material was equal to a path independent integral. Its definition is given
in cartesian cuordinates as, (see rigure 13) :
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S5 where W is the energy density, defined as W = | o dejj |
' is an arbitrary path around the crack ,

. T; is the traction vector defined according to the outward normal n along I

oN and is given as Tj= o n;.

N The J-integral is well established as a parameter which describes the magnitude of
near-tip stress and strain fields. Knowies and Sternberg [S58] subsequently generalized

4y

the J-integral to be a vector, Ji, corresponding to the potential energy release rate in any

LLLUSY

coordinate direction of the crack extension. Ji is defined as:

o X . '.‘-‘:t."\','t')\ -“ L '
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Q
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where ny denotes the unit outward normal to T', lying in the same plane of the crack.

For the two dimensional combined mode | and mode I fracture, only the Jy- and Jo-

integral definitions need to be considered. Both integrals have the following important
properties:

i} PathIndependence :

A proof of the path independence of the J-integral can be found in [59).
Finite element investigations of J-integral values obtained for paths very close
to the crack tip, however, (assuming elastic-plastic material behavior) stowed
significant path dependence where J-integral values approach zero very rapidly.
McMeeking [60,61] investigated this behavior systematically and showed that it can
be related to the large deformations around the blunting crack. The J-integral values
calculated along paths more than 5 to 10 times the crack opening away from the crack
tip can be considered as path independent. Their role as parameter characterizing the
crack-tip field quantities is probably retained.

Fe,
'y

ii) Compatibility with Linear Elastic Fracture Mechanics :

For linear elastic behavior J1 and J, are equivalent to the energy release rate G in x,
and x5 direction, respectively. Hellen et al. {62] and Blackburn (63} related J4- and

Jp-integral values to stress intensity factors for a two dimensicnal crack. The

relations are given for the case of plane strain as :

(7.3)
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iii) Application in Elastic Plastic Fracture Mechanics:

The J-integral value for two dimensional crack problems has been used by many
authors to predict the onset of crack growth initiation in cracked bodies both for
linear elastic and elastic plastic material behavior. This concept was introduced by

Begley and Landes [14], [64]. A critical value of J;c in pure mode | for plane strain

conditions can be determined by a standard test method if the conditions of quasistatic
loading, negligible body forces, monotonic loading and stationary crack are met.

Kishimoto et al. [15], in their interpretation of J; an Jo as vector gquantities

L 2N

L5 of the strain energy release rate for crack extension in the two dimensional case,
v ) ) o

2 defined a resuitant vector J . Its magnitude is given as :

G4

.

[
v ’.‘-
4 5 "‘

d
P

”’

‘o J(es.’\[J\T*'J_zz (7.4)
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They proposed that failure in mixed mode occurs if the resultant J-integral equals the

N

critical energy release rate:

According to Bakker {65] this criterion has found little experimental verification for

the case of mixed mode fracture.
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z A TION QF THE J - INTEGRAL VA

Various procedures have been developed in the past to calculate the J-integral value. A
survey of different methods can be found in [66]. In the present investigation the virtual
crack extension method and the direct integration method were empioyed.

i
‘l
e T
A}

't'l“l
N
,

i} The Virtual Crack Extension Method :

R
,"'.'l

VS
AN

This method originally described by Parks [67] as the stiffness derivative method is
an implemented feature in most commercial finite element programs like ABAQUS. In

i4e

A
Pl

»

this method, the potential energy release rate is evaluated directly in a single finite

bl

A

~ element analysis by advancing the crack tip or crack front by a small amount . This
¢ small advance changes the stiffness of some of the elements in the mesh and the change
in potential energy can be calculated. Even for coarse meshes this method yields very
accurate results [53]). According to Nagtegaal [66], the method of virtual crack
extension is particularly accurate if collapsed elements at the crack tip are used.
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The Direct Integration Method :

2@,

S
1]

A direct way of calculating both Jy- and Jp-integral values is the numerical

b
»
LLY

integration of equation (7.1) using discrete data points (e.g. from a finite element

«
L4
y £ a

"'\’

analysis). The circumferentially arranged elements in the present mesh suggested the

x
< a
» 4y 4y

L )

use of circular paths around the tip. The definition of Jy and J; had to be expressed in

polar coordinates. The transformation of x and y into polar coordinates is given as:

b

X =rcos 9, y =rsin 8 (7.6)
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The path increment ds can be expressed as :

[
.
ds =rde (7.7)
o
O
W
LY . . . .
f,. The displacement derivatives with respect to x, and x, assume the following form,
s
( 1 respectively :
heR
o du QUi 1o Ui
b FE R TAR A Ty
'1 ’-I
N u sine Ui, L cogg AU (7.8)
“.',; dy ar r )
o
f,j The traction vector can be expressed along a circular path as :
b
K3
T Tx x Oxy s 6
o - (7.9)
:v T2 Oxy a'yy sing
o Jy and J,, calculated along a circular path can now be given as :
i
o Jymt (W T (coso 2. Laing iy g
= cosg -T. (c0s@ —- —sing —
L 1 K 9 -1 TR 6 I'de
D, ~ '\-‘ -
o (7.11)
P,
P J rf‘[Wsin T (s'neaui«»1 ooseaui)]d
. - “T (sine it aui
2= " X o - ar a6 °
:»""-
.-'-:.
-u"\-'
A
SES) Here, For the case of slastic-plastic material behavior, the strain energy density is
~\'~-
'.‘ ' - the sum of its elastic and piastic (dissipative) part :
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W=W9+Wp| (7.10)

A FORTRAN program has been written to perform the numerical calculation. Stress
components, elastic energy density as well as plastic dissipation and displacements were
read from the ABAQUS output file along a defined path by a data post processing program.
All quantities related to an integration point, (e.g. stress components, linear energy
density and plastic dissipation) were interpolated linearly for the adjacent element node.
The derivatives of the displacement components were computed using a sixth order finite
difference formula. The integration along a path, defined by 65 equally spaced element
nodes, was performed numerically using the Simpson's second order integration rule.

For all mixed mode cases considered both J- and Jo-integral values were calculated

for radii ranging from 0.6 to 8.3 mm from the crack tip.

Z.3 RESULTS OF THE J; AND"J> INTEGRAL CALCULATIONS

Figure 14 depicts the variations of the Jy- and Jp-integral values for all mixed modes
considered over the radial distance r from the crack tip. Jy-integral values range between
9.8 N/mm for the case of pure mode Il to 21.2 N/mm for the case of mixed modes given as
KyKp= 2222/172. Jp values are generally negative and range between J, = 0 for the
cases of both pure modes | and Il and -14.9 for the case of KyK; =1405/1462.

Good path independence was obtained for all cases considered. For increasing mode !l
contribution, however, greater variations in the Ji-integral values can be observed. The

maximum deviation reaches 9.3 percent for pure mode |l loading in comparison to a




LN
'\,".
ey
'.}:_: deviation of 1.12 percent in the case of pure mode .
19
‘-‘ Jo-integral values are generally less accurate and therefore show more path
:; dependence in their results. Hellen et al [62] pointed out that due to higher overall
1 ]
::: displacement gradients in the x5 -direction, the associated numerical errors are large.
o™
- My .'
( R This can be seen from the deviations of J, - integral values which range between 9 percent
< (for the case of K{/K| = 2222/175) and 17 percent (for the case of K|/K; =
h\:l
G 1405/1463).
o
o Both Jy- and J- integral values show little variation for outer paths between 4.1 and
‘_ 8.6 mm and, therefore, these values may be viewed as more accurate.
v, -
oY Table 5 lists the Jq-integral values for the outermost path from both the direct
rle
| ’: integration and the virtual crack extension performed by ABAQUS. As pointed out in
'(‘ j ( chapter 6.2, the Jq-integral calculations of four cases of mixed modes could not be
13 A . .
\ o calculated by ABAQUS. Deviations of Jq-integral values gained from both methods are
J‘,\
‘,ﬁ? within 5.7 percent.
L
SN in all further investigations the Jy integral values given in Table 4 will be used.
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The dominant singularity solution for a cracked plate in a power law hardening material
has been given independently by Hutchinson [21] and Rice and Rosengren [22] for both mode
| and mode |l stress distributions. The solutions which are known as the HRR singular field
were generalized by the solution for the mixed-mode stress distributions presented by Shih
[27]. For the smalil-scale yielding case, the region around the crack tip can be divided,
(according to the nature of singular material behavior), into three distinct areas [59] :

- the far tip field
- the near tip fieid and
- the intermediate zone.

Figure 15 identifies these areas.

8.1 THEFARTIP FIELD

At distances large compared to the plastic zone size the stress and strain distribution is
dominated by the 1/Nr singularity from the linear elastic solution for the stress and
displacement fields. A measure of the strength of the singularity is the path independent

J-integral which can be related to the stress intensity factors K, and K;; according to
equation (2.2). A convenient definition which characterizes the relative strength of K; and

Ky in the far tip field was introduced by Shih [27] as :

M® 2 -2—tan [I|m ]=—tan [5‘] (8.1)
n r-0 re K .

Me is referred to as the far tip field mixity parameter which ranges from 0 to 1 with M®=a1
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for pure mode | and M® = 0 for pure mode |l.

8.2 THENEAR TIP FIELD

For a strain hardening material which can be described by a power law, i.e. the
Ramberg- Osgood relation, the stress-strain relation based on the deformation theory of
plasticity is given as :

1+y 1+2 vy 3 o n'15ij 8.2

oy is the yield stress,

~

Sij is the deviatoric stress tensor given in equation (4.1),

o is the effective stress given in equation (4.3),

€y is the yield strain,

is Poisson's ratio,

is Young's modulus,

is a material constant and
is the hardening coefficient.

Large plastic strains can be expected in the near field so that (with negligible elastic
straing) equation (8.2) becomes :

CSij (8.3)

it can be assumed that the only singularity contained in this region is associated with the
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crack tip. For a circular path of radius r, where ry < r < D, enclosing the crack tip (see

Figure 15 ), the J-integral (according to equation (7.11) ) remains path independent.

To ensure the path independence of the J-integral value the integrand must exhibit a 1/r
singularity. Since the integrand is essentially a product of stress- and strain-like
components, this product leads to a function (f) which is only dependent on 6 multiplied by a
1/r term (assuming the material behavior satisfies equation (8.3)) :

Hutchinson [21] has shown this to be the case for power law hardening materials if the
stresses and strains are given in polar coordinates. For a power hardening law satisfying
equation (8.3), equation (8.4) implies that the following relations hold :

I-J

0’.[.]: Cr n+l O'l]( 9)
LU

€= cr n+l eij(e) (8.5)
1

up= Cr o+l G (8)

where o ij. €jj and ujare stress, strain and disptacement functions in polar

representation where i and j are radial and angular components and
C is a material dependent constant term.

Ditferent from the asymptotic s:lution for linear-elastic material behavior, therefore, the
singular fields ir; the elastic-plastic range are dependent on the hardening characteristic of
the material.

Rice and Rosengren [22] and Hutchinson [21] solved equation (8.5) for the stress,
strain and displacement functions by introducing an Airy stress function. A partial
differential equation governing the stress function ¢in be derived from the compatibility
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equation which can be reduced to a fourth order nonlinear differential equation and solved by
a higher order finite difference scheme. A more detailed discussion of the procedure can be
found in [59].

The constant term C can be determined by taking advantage of the path independence of
the J-integral. Substitution of equations (8.5) into the definition of the J-integral
(equation (7.1)) leads to the determination of the constant C as :

1
J e (8.6)

- (

where a is a material constant ,

€y is the yield strain,
Ty is the yield stress,

n is the hardening exponent and

ln is a constant given by :

n
Inaj'{ﬁrlﬁ'a'e - [sing( &y (Ug- -aa—) Grg T+ 99)) n4_1(0'”01"" Ge)oose]}ds
-

These equations (which were originally formulated for pure mode [) can be extended for

the case of mixed modes. Due to the path independence of the Jq-integral (regardiess ot w
mixed-mode contributions), all near tip field quantities remain under the control of the
Jy-integral value.

In the same manner as the elastic mixity parameter (M@ in equation (8.1) ) the piastic

mixity factor MP identifies the relative composition of mode | and mode Il directly ahead of
the tip according to :
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"%
t
::E From equations (8.5 to 8.7) the formulas defining stress, strains and displacements in
; i the near field of a crack under mixed-mode conditions can now be given as :
4 ::' J _1_
( oo )
ae,o.ln
o J L
<. n+
- €ij= , r) &;i(e) (8.8)
A aey oty
° J =
e uj = ( )T G (o)
Ey; ae, o, | !
0N Yoy
oS
o™
o The stress and displacement fields are therefore characterized by a 1/r(1/(n+1)
‘ ( singularity whereas the strain field assumes a 1/r(n/(n+1) singularity. In reality such
18"
o large stress components cannot exist since geometry changes modify several aspects of the
M
‘ : tip field and therefore limit the stress concentration at the tip (as indicated in the blunting
analysis of McMeeking [60,61]).
M
o
_&2
I:J
N 83 THE INTERMEDIATE ZONE
®
p
‘- Combination of the HRR field and the far field characterizes the stress and strain
distribution and magnitude of the intermediate zone. Whereas its outer border is defined as
“- the transition from the elastic to the plastic zone, its border to the HRR field can not be
-" distinguished clearly. In general it can be assumed that the powers characterizing the field
::: singularity of the intermediate zone show a smooth transition into the characteristic
f‘. powers of the HRR field. No analytical solution has been found yet to connect near tip field !
3 .
e - and far tip field quantities (27,59]. i
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. N OF THE F! VARIA

Stresses and the strain energy densities around the crack tip of the investigated plane
strain specimen were studied with respect to their singular behavior under varying mixed-
mode conditions. All data were taken from the finite element analysis output.

H Fl

Figure 16 shows the plot of the effective stress versus the distance ahead of the crack
tip along the line & = 0° for all mixed-modes cases considered. Four important features
characterize the material response under the influence of mixed modes :

i) The effective stress increases sharply for higher mode Il contributions under
comparable loads. This tendency is also observable if the effective stresses around the
crack tip is considered. Figure 17 shows the effective von Mises stress along a circular

)

path having a radius of r « 0.4 mm away from the crack tip.

ii) For three cases of low mode Il contributions there is a distinct transition zone between
the elastic and the elastic-plastic zones. Both zones are separated by the yield stress of
oy =265 MPa.

iii) The elastic-plastic zone shows in its outer region an increasing influence of the
intermediate zone. Plastic strains which are of the order of their elastic counterparts

o

o

result in @ combination of the HRR field and the far field.

Al
ALLI SO

e

[}
l'l'

L s
1 4

iv) At distances very close to the crack, i.e. less than 0.5 mm, the singularity governing

4
-

the effective stress behavior is weaker than the singularity characterizing the elastic
material behavior and can therefore be attributed to the HRR field. In Figure 18, using
full logarithmic axes, the nature of occurring singularities are shown. For distances
close to the crack tip, the equivalent stresses of all mixed modes are distinguished by
o . parallel lines before the smooth transition into the intermediate zone which show
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particularly weak singular behavior. For four cases of strong mode | contribution the
elastic singularity is sharply separated from the elastic-plastic zone.

Figure 19 shows the y -component of the stress tensor versus the distance from the
crack along a line 8 = 0° for all mixed-modes cases considered. Increasing mode Il
contribution results in a steady decrease in the values of the stress component in
y-direction which approach zero for the case of pure mode Il. For distances less than
approximately 0.2 mm away from the crack tip significant scatter in the y-component of
the stresses for mixed modes of high mode 1l contribution can be observed. It is assumed that
this stems from the influence of the badly distorted crack tip which is exposed to an
increased rotation as mode Il contributions grow. Since stresses are a second order quantity,
(that means they are calculated from displacement derivatives obtained from the finite
element solution) this effect may be amplified.

The powers of the singularities can easily be determined if the stress is assumed to
follow the form :

0g=CrTog (9.1)
In full logarithmic notation of equation (9.1) the parameter ¥ indicates the slope according to :
log (gg) = Y log (r) + log (C ) (9.2)

The extraction of the exponent T has been performed using a least square approximation for
all mixed-modes casas considered. Table 5 lists these powers for distances from the crack
which contain the characteristic singularity. Compared to a predicted value of the power of
T=-1/7 for the employed material, it can be seen that for increasing mode |l contributions
this value is approached. It reaches the predicted value of Y = -0.1428 almost exactly in the
case of pure mode Il. For overwhelming contributions of mode | the HRR solution
characterizing power was not reached even for closest distances to the crack tip. This is
mainly caused by the distinct crack-tip blunting which results in a decréase in the effective

stress and weakens their singular behavior. The elastic singularity which could be

determined for four cases showed excellent agreement with the predicted value of ¥ = -0.5 .
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2.2 STRESS AND STRAIN DISTRIBUTION, PLASTIC ZONE SIZE AND CRACK BLUNTING

Contour plots of the effective von Mises stress in the vicinity of the crack tip allow a

[}

::.j,: good qualitative assessment of the body response under the influence of a crack under mixed-
‘_ﬁ:ﬁ mode loading.

?_‘;E Figures 20 to 26 display the contours of the effective stress in a zone of 1 mm radius
( around the crack tip for a selection of mixed-modes cases (which are identified on each
X Z’-;:Z plot). The typical symmetric butterfly shape of the stress contours in the case of mode |

&w_\ incline and assume asymmetric shapes through stages of mixed modes with increasing mode
J‘-::. [l contributions until the contours show the typical compact and symmetric mode 1l pattern.
'0.s The increasing concentration of the von Mises stresses around the crack tip is
.::'f-_ij significant for higher mode Il contributions. While for overwhelming mode | contributions
\_,E elastic regions can be still observed, the zone considered is entirely plastic in the range of
N higher mode I1 values.

2 ( The shapes and magnitudes of the effective stresses and their variations between 1 mm
:;: and 10 mm radii for mixed modes and 2 mm to 20 mm radii for pure mode Il around the
Sj; crack tip are shown in Figures 27 to 33. Here the influence of mode Il contributions resuits
o8

in higher effective stresses and, consequently, in larger plastic zone sizes.

The outermost contours of the equivalent plastic strains represent a good measures of

B

.-;Z- the plastic zone size. Figures 34 to 37 are contour plots of effective plastic strains for
: selected mixed-mode cases in a circular region of 1 mm radius around the crack tip. The
'."‘ increasing gradient of plastic strains around the crack tip is evident. Figures 38 to 43 show
;_-;:Z the effective plastic strains in the region of 1 to 10 mm around the crack tip for all mixed
: modes and the region 2 to 20 mm for the case of pure mode |l.
:::-f Figures 44 to 48 show the deformed mesh for a selection of mixed-modes cases in a
; region of 1 mm radius around the tip. The displacements are magnified by a factor of two. In
_;:«; the case of pure mode |, a parabolic shaped crack blunting can be observed. In chapter 6.1 it
‘:E' was pointed out that the employed crack tip elements can only approximate the strain
j;:ji assymptote. For increasing influence of mode Il it can be seen that the crack-tip opening
. <. decreases with increasing mode |i contribution and the crack tip tends to rotate in a
S
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clockwise direction, which reaches its extremum in the case of pure mode Il. In the case of
high mode Il values, the extreme hydrostatic state of stress around the tip cannot be relieved
by crack-tip blunting (as in cases with overwhelming mode | contributions) where finite
strains create a relatively smo.th crack tip.

Figures 49 to 52 depict only the upper and lower element layers around the crack tip in
deformed and undeformed states (with a magnification factor of 10) for selected cases of
mixed-mode loading. The influence of the rotation of the crack tip and the deviation from the
center line of the undeformed crack is distinct for cases of high mode Il values.

Figures 53 to 56 show deformed versus undeformed meshes of the outer region between
t and 10 mm radii around the crack.

2.3 THE STRAIN ENERGY DENSITY

The strain energy density criterion, according to Sih [31,32], has not only been
ca\pable of predicting fracture under brittle material behavior, but also fracture in the
elastic-plastic regime.

The strain energy density, using the notation of Sih, is given as :

aw i
(%) = [ o de.. (9.3)

where  €;; is the strain tensor and

Tjj is the stress tensor.

The fact that excessive change in shape can be associated with yielding while excessive
change in volume can be associated with fracture lead to the formulation of the strain energy
density criterion for elastic plastic material behavior. It is postulated, [31,32], that
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maximum yielding occurs when the strain energy density reaches its maximum value

(dW/dV)may whereas fracture initiation is associated with minimum strain energy density

(dW/dV)min- Chow and Xu [31] investigated the extension of the modification of the strain

energy criterion in the elastic-plastic regime for the case of mixed-mode loading. It was
observed that the strain energy density criterion led to incorrect predictions of the angle of
fracture initiation since two local minima can be observed for some mixed-mode cases.
Figure 57 shows the variation of the strain energy density versus the angle 6 along a
circle of radius r=0.4 mm around the crack for selected cases of mixed-mode loading. The
minimum strain energy density is located at angles from 180° for pure mode | to 90° for
pure mode Il. This contradicts experimental evidence [68-70]. Therefore the assumption of
the crack growth direction was restated by Sih [71] that the direction of maximum vatue of

(dW/dV)min governs the onset of crack growth. These values range between 6 =0° for mode

1to 8 = -90° for the case of of pure mode Il and are given in Table 6 for all cases of
mixed-mode loading considered.

In contrast to the maximum values of the strain energy density, which increase sharply
for growing mode ! contribution due to higher stress and strain components around the

crack, the maximum values of (dW/dV)n, remain for all cases remarkably constant.

Very good agreement between the location of (dW/dV)qa, arid the maximum yield can be

found by comparing the the angular position of the highest effective stress in Figure 17 and
igures 20 to 26 with the predicied values by the strain energy density criterion.
The singular behavior of the strain energy density versus the distances ahead of the

crack along the line 8=0° is depicted in Figure 58 in full logarithmic representation. In
equation (8.5) it has been assumed that the strain energy density is governed by a 1/r
singualrity inside the HRR field. It is evident that low contributions of mode !l values result
in weaker singularities in the strain energy density as the intermediate zone is approached.
Determination of the powers of the singularities which are given in Table 7 demonstrate that
the determined powers are in excellent agreement with the predicted value aven for
intermediate cases of mixed-mode loading. Cases distinguished by low mode Il contribution
show clearly the weak singular behavior inside the intermediate zone. As tha crack tip is

approacned, it can be seen that the singular behavior of these cases converges towards 1/r.
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fu \ This observation reinforces the correctness of the assumption in equation (8.5) that the
i‘

HRR field solution is valid if the strain energy density exposes a 1/r singularity inside the
plastic zone around a crack.
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Vi HE STR FROM FINI MENT R

The stress functions can be resolved from near tip field stress and displacement

components obtained from the finite element results. All parameters required for 65 equally

spaced nodes along a circular path of radius r = 0.4 mm around a crack were read from the

ABAQUS data output file. Figure 18 shows that the selected radius is still within the

dominant crack-tip singular field for all mixed-modes cases. Paths closer to the crack tip

showed significant scatter in the values of o, and o gg components.

Determination of the stress function results in solving the three equations given in equation

(8.8), where the components of ojj and u; are given in polar coordinates :

~ J - —

.. = nel g .
] (aeyay'nf) |
(10.1)
.
G' a( J |) n+t n—-ﬂ ui
( aeyo'y n
N r
n—~ . H -~ -~ aa -~ au 1 ~ ~ -~
|nf7{{n+1a'e°°59 [5‘”6( O'rr(Ue' —a—er-)' Ure(ﬂr*a—ee))*ﬁ(o'”ﬂr +o’r9u9) me]}de

The equivalent stress o g for the case of negligible elasticity in the case of plane strain is

JI‘ .
o given as :
.

> Go=N3(35, - Gog)* Trg . (10.2)

- Due to the dependence of I, on values of ojj, uj and its angular derivatives (along a
e circular path taken from -m to =), the solution of this system of equations can only be

accomplished .teratively. In the present case, use of the interval halving method was made
which showed rapid convergence for all cases considered. Figure 59 eéxplains the principle

of the interval halving method.

W T For an initial estimate of 1, the stress and displacement functions are calculated
e '
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according to equation (10.1). The derivatives of the nodal displacements with respect to 8
are obtained using a sixth order finite difference formula and the integration is performed

using Simpson's second order integration rule. For incrementaily increasing values of 15,
both stress and displacement components and derivatives are calculated and substituted into

equation (10.2) to gain a new value of |,. The calculated value of |, approaches the assumed
value of I, and finaily surpasses it. Since this can be expressed as the difference (F)

hetween the assumed value |, and the calculated value I,

F=|na'|ncy (103)

a change of sign in (F) is expected between two incremental values of |,;. The following
interval haiving procedure narrows the interval where the change in sign has occurred down
to a specified residual. A numerically accurate value for |, can therefore be obtained.

Figures 60 to 69 show the stress functions o, ,0gg , 0 g and the effective stress
function o ¢ which are normalized by setting the maximum value of the 8 -variation of the
effective stress to unity.

For all cases considered, the components o gg and o ,g show the expected value of zero
on the crack surfaces, that is, for angles of 8 = £ n. In contrast to pure mode i in the linear
elastic case, o, assumes positive values on either side of the crack flank. On opposite
surfaces of the crack o, is positive for both pure mode | and a mixed-mode case

distinguished by the stress intensity ratio of Ky/K; = 2222/178. This observation

contradicts Shih's statement [27] that * for any deviation of mode |, the minus sign holds in:
T (Bam)= -0 (O=-1t) (10.4)
for 0 < MP < n.”

Also, the equivalence of the magnitudes of radial stress components on the surfaces of the

crack at equal distance from the crack could not be shown except for the symmetic cases of
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both pure mode | and mode II. This can also be seen from the magnitude of the effective von
Mises stresses on the crack surfaces in Figures 20 to 26. Since the effective stress contains
o as the only component different from zero, their contours had to match up at the crack
flanks. Even though the observation of equal radial stresses on crack surfaces by Rice and
Budiansky [71] seems plausible, no reason for this mismatch could be found. This
phenomenon could also be observed in other studies on mixed-mode fracture [27,72,73].
From equation (8.7) the mixity parameter MP! can be resolved from the stress

components o gg and o ,g of the finite element results. Some scatter in the ratios of o gg

over o ,g for distances of less than 0.5 mm from the crack tip was observed and, therefore,

a least square approximation was employed through ail datapoints for distances ranging from
0.08 to 1 mm from the crack tip.
Figure 70 shows the ratios of o gg over o g of same integration points along the crack

and their corresponding least square approximations for three mixed-mode cases. The
constant character of the curves is evident.

The relationship between the calculated values of the mixity parameter MP! and the
constant |, given in equation (8.6) is shown in Figure 71. The results compare well with

those generated by Shih (27] for the hardening powers of n = 5 and n = 13.
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11, CONCLUSIONS ANO RECOMMENDATIONS FOR FURTHER RESEARCH

In the present study, local crack-tip quantities were investigated for general
mixed-mode crack problems under the condition of plane strain. In order to become
independent of a specific specimen geometry, the local crack-tip region was modeled as a
disk with the crack tip at its center. Displacements on the boundary of the local crack
region were calculated from assumed combinations of stress intensity factors for mode |
and mode |I.

The strain energy density criterion, according to Sih, was applied as a fracture
criterion. This provides a concise relationship between a given strain energy density
factor and the stress intensity factors, K| and K. For ten comparable cases of loading

(which span the range from pure mode | to pure mode II) the body response for
elastic-plastic material behavior was caiculated using the finite element package ABAQUS.
The eight node plane strain isoparametric elements employed were degenerated into
triangular shaped elements around the crack tip to produce a 1/r singularity in strains.
The material data of the stainiess steel A304 was used in the finite element calculation.
The path independent Jq-integral (which is a governing parameter of the amplitude of

the crack-tip singularities of the stress and strain fields) was calculated according to the
method of virtual crack-tip extension that is available in ABAQUS. The direct integration
method was applied for four cases of mixed-mode loading, which had to be subdivided into
separate consecutive steps to reach convergence. For these cases the virtual crack
extension method could not be applied by ABAQUS. The Jy-integral value was calculated
using the direct integration method along nine circular paths whose radii from the crack
tip spanned between 0.6 and 8.3 mm. Generally, very good path independence was observed
which indicated the correctness of the obtained values and justified for their further use.
Good agreement between the J4-integral values obtained by both methods was observed
when both were caliculated. Deviations between the results obtained by both methods were
within 5.7 percent for all cases considered.

Jo-integral values, which have attained limited usage in the field of fracture
mechanics, were aiso evaluated. Less path independence especially for cases of more
balanced mode | and mode |i contributions was observed due 1o larger numerical errors in
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the evaluation of the displacements which was caused by higher displacement gradients in
the y -direction.

The characteristic singular behavior of stresses and strains within the HRR field, the
intermediate zone, and the far field was best expressed by the dependence of the effective
von Mises stress on the distance from the crack tip, along the line 8= 0°. Extraction of the
powers characterizing the singular behavior of stresses and strains indicated the
dependence of the size of the HRR field on increasing mode |l contributions. In the case of
pure mode |, the characteristic exponent of -1/7 (for the given material) in the effective
von Mises stress was never reached due to the distinct influence of crack-tip blunting.
Extreme hydrostatic stresses in the vicinity of the crack tip are reduced by finite strains
and the stress-free crack-tip surfaces. For higher mode !l contributions, the crack width
decreased significantly to an aimost sharp crack in the case of pure mode Il. Larger plastic
zone sizes and less crack-tip blunting result, therefore, in a distinct HRR-field of

increasing size which was observed to be valid for a distance of approximately 25 J/O'y in

the case of pure mode Il. Accordingly, the effective stress increased sharply for higher
riode I} contributions.

The strain energy density was investigated to determine its applicability as a fracture
criterion for elastic-plastic material behavior under mixed-mode loading. It was stated by
Sih [29] that the maximum yield occurs where the strain energy reaches its maximum
which could be verified in this study. The modified formulation of the condition that crack
extension occurs under the angle where the minimum of the strain energy density shows a
maximum seems to be promising. For increasing mode Il values the._'q[rection of crack
growth initiation could be shown to move from 0° to -90° relative to the crack plane.
This is comparable to the results of the linear elastic solution. '

An emphasis of the presant study was the numerical extraction of the stress functions
from the finite element solution, for a given material with a hardening factor of six. The
stress functions obtained compared reasonably well with those obtained by Shih.
Theoretical considerations suggest radial stresses of equal magnitude for equal distances
from the crack tip on either crack surface. This would imply that. the radial stress
function (which is the only component different from zero on the crack surface) has the
same iagnitude at either side of the crack surface. This could only be shown for the
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= \ symmetric mode | case and the skew-symmetric mode Il case. In all other cases of mixed-
mode loading a deviation in the magnitude of the radial stress component on either side of
the crack could be observed. The effective von Mises stress (which is only dependent on the
radial stress along the surfaces of the crack) showed this mismatch aiso. For any amount
of mode Il contribution, the predicted change in sign of the radial stress acting on opposite
crack surfaces was not verified by the finite element results. One case investigated, where

the specimen was subjected to a load resulting in stress concentration factors of K| = 2222
and K = 178 NVmm3, showed positive radial stresses on either side of the crack surface.

The finite element calculations indicated that the sign of o, on the crack surface jumps

suddenly from positive to negative values for a more intermediate mixed-mode
combination.

The investigation of the observed discrepancy between the behavior of theoretical

7,4

radial stresses along the crack surface and the finite element solution was not studied in

2
e,

g
e

this thesis. An important extension of this work should include research on this

x
[}
Iy
) ]
¥

- phenomenon.

2 An extension of this study should include investigations of the local crack-tip

()
")

o

quantities of a suggested mixed-mode specimen. The mixed-mode fracture specimen (due

»

5

[ T T ]

to Richard [34]) has been shown to simulate very well arbitrary mixed modes ranging

2 x

e,

P
s

from pure mode ! to pure mode Il and should be given consideration. Both numerical and

2\

experimental studies are necessary to further investigate two interesting concepts of
fracture criteria which predict both the onset of crack growth and the direction of crack
extension for ductile materials under mixed-mode loading : .

,:" i) The strain energy density criterion according to Sih

: The modified formulation of the predicted angle of fracture initiation appears to be
* promising in the finite element resuits but needs further experimental confirmation.

Further investigation of crack growth initiation in relation to its assoviated

strain energy density , especially in the range of high mode Il values seems nece:isary.

ii) The T-criterion according to Theocaris
- This criterion (which has been extended very recently for mixed-mode loacings
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under ductile material “ehavior) incorporates the HRR field solution. Experiments
with inclined cracks in a center cracked panel showed good agreement in the prediction
of the angle of extension versus the crack and failure loads. Both finite element
analysis and experimental investigations with a specimen which can reproduce all
combinations of mode | and Il may establish this criterion in the field of fracture
mechanics.
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